Abstract

An isometric action of a compact Lie group on a Riemannian manifold is called hyperpolar if there exists a closed, connected submanifold that is flat in the induced metric and meets all orbits orthogonally. In this article, a classification of hyperpolar actions on the irreducible Riemannian symmetric spaces of compact type is given. Since on these symmetric spaces actions of cohomogeneity one are hyperpolar, i.e. normal geodesics are closed, we obtain a classification of the homogeneous hypersurfaces in these spaces by computing the cohomogeneity for all hyperpolar actions. This result implies a classification of the cohomogeneity one actions on compact strongly isotropy irreducible homogeneous spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.