Abstract

Let [Formula: see text] be a compact Lie group acting on a smooth manifold [Formula: see text]. In this paper, we consider Meinrenken’s [Formula: see text]-equivariant bundle gerbe connections on [Formula: see text] as objects in a 2-groupoid. We prove this 2-category is equivalent to the 2-groupoid of gerbe connections on the differential quotient stack associated to [Formula: see text], and isomorphism classes of [Formula: see text]-equivariant gerbe connections are classified by degree 3 differential equivariant cohomology. Finally, we consider the existence and uniqueness of conjugation-equivariant gerbe connections on compact semisimple Lie groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.