Abstract

Leukaemia is a cancer of the white blood cells. The type of white blood cell affected in either lymphoid or myeloid. And leukaemia is defined in two ways, such as acute leukaemia (AL) and chronic leukaemia (CL). These kinds of leukaemia start when typical blood cells change and grow wildly. This paper describes in the following steps to classify the chronic leukaemia automatically and more accurately. First, pre-processing the colour scale of digital microscope blood image, then segment the image by new extension of k-means clustering algorithm, and Hausdorff dimension (HD) is utilised for feature extraction, finally the classification is done by utilising Enhanced Fuzzy Min Max (EFMM) neural network. The proposed method obtained 99.95% accuracy for Lymphocytic and Myelogenous cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.