Abstract

Abstract The interaction between two tropical cyclones with different core vorticities and different sizes is studied with the aid of a nondivergent barotropic model, on both the f plane and the sphere. A classification of a wide range of cases is presented, using the Dritschel–Waugh scheme, which subdivides vortex interactions into five types: elastic interaction, partial straining out, complete straining out, partial merger, and complete merger. The type of interaction for a vortex pair on the f plane, and the same pair on the sphere, was the same for 77 out of 80 cases studied. The primary difference between the results on the f plane and those on the sphere is that the vorticity centroid of the pair is fixed on the f plane but can drift a considerable distance poleward and westward on the sphere. In the spherical case, the interaction between the cyclone pair and the associated β-induced cyclonic and anticyclonic circulations can play an important role. The “partial merger” regime is studied in detail...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call