Abstract

In the field of electronics manufacturing, electronic component classification facilitates the management and recycling of the functional and valuable electronic components in electronic waste. Current electronic component classification methods are mainly based on deep learning, which requires a large number of samples to train the model. Owing to the wide variety of electronic components, collecting datasets is a time-consuming and laborious process. This study proposed a Siamese network-based classification method to solve the electronic component classification problem for a few samples. First, an improved visual geometry group 16 (VGG-16) model was proposed as the feature extraction part of the Siamese neural network to improve the recognition performance of the model under small samples. Then, a novel channel correlation loss function that allows the model to learn the correlation between different channels in the feature map was designed to further improve the generalization performance of the model. Finally, the nearest neighbor algorithm was used to complete the classification work. The experimental results show that the proposed method can achieve high classification accuracy under small sample conditions and is robust for electronic components with similar appearances. This improves the classification quality of electronic components and reduces the training sample collection cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.