Abstract
A real-time flaw diagnosis application for pressurized containers using acoustic emissions is described. The pressurized containers used are cylindrical tanks containing fluids under pressure. The surface of the pressurized containers is divided into bins, and the number of acoustic signals emanating from each bin is counted. Spatial clustering of high density bins using mixture models is used to detect flaws. A dedicated EM algorithm can be derived to select the mixture parameters, but this is a greedy algorithm since it requires the numerical computation of integrals and may converge only slowly. To deal with this problem, a classification version of the EM (CEM) algorithm is defined, and using synthetic and real data sets, the proposed algorithm is compared to the CEM algorithm applied to classical data. The two approaches generate comparable solutions in terms of the resulting partition if the histogram is sufficiently accurate, but the algorithm designed for binned data becomes faster when the number of available observations is large enough.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.