Abstract

The inelastic scattering of NO molecules from graphite surfaces is studied by classical trajectory methods. The experimental results from Frenkel et al. (1982), Segner et al. (1983), and Häger and Walther (1984) are analyzed. A model using a small isolated part of the graphite surface in interaction with the NO molecule gives results in good agreement with experiment. The parameter values in the model are fixed at the values previously found to reproduce the angular distributions well [Nyman and Pettersson (1987)]. For this system, the experimental results give a ‘‘rotational cooling’’ such that the rotational temperature of the inelastically scattered molecules becomes smaller than the surface temperature. This effect is reproduced accurately by the calculations, giving a rotational temperature of 250 K, independent of the surface temperature above 300 K. The main factor controlling this inelastic rotational cooling is the low initial value of the normal component of the total angular momentum. A ‘‘rotational rainbow’’ structure is found in the calculations in many cases, primarily at high surface temperatures. The final energy distributions are shown to be mainly statistical by application of a unimolecular decomposition picture, similar to the common RRK type model used for gas phase reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call