Abstract

Cazanave has identified the algebraic homotopy class of a rational function of 1 variable with an explicit nondegenerate symmetric bilinear form. Here we show that Hurwitz's proof of a classical result about real rational functions essentially gives an alternative proof of the stable part of Cazanave's result. We also explain how this result can be interpreted in terms of the residue pairing and that this interpretation relates the result to the signature theorem of Eisenbud, Khimshiashvili, and Levine, showing that Cazanave's result answers a question posed by Eisenbud for polynomial functions in 1 variable. Finally, we announce results answering this question for functions in an arbitrary number of variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.