Abstract

We revisit the classical problem of the viscoelastic response of nematic (liquid crystal) polymers to small amplitude oscillatory shear. A multiple time scale perturbation analysis is applied to the Doi–Hess mesoscopic orientation tensor model to describe key features observed of longtime experiments, both physical (Moldenaers and Mewis, J Rheol, 30:567–584, 1986; Larson and Mead, J Rheol, 33:1251–1281, 1989b) and numerical (herein). First, there is a very slow time scale drift in the envelope of oscillations of the major director; we characterize the mean director angle and the envelope of oscillation. Second, there are bistable asymptotic orientational states, distinguished in that they are precisely the zero-stress orientational distributions noted in Larson and Mead (J Rheol, 33:185–206, 1989a). Third, the drift dynamics and asymptotic mean director angle are determined by the initial orientation of the director, not by material properties; we characterize the domain of attraction of each bistable state. Finally, the director drift leads to a predicted longtime decrease in the storage and loss moduli, consistent with experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.