Abstract
We model the demographic dynamics of populations with sexual reproduction where the reproduction phase occurs in a non-predictable environment and we assume the immigration/out-migration of mating units in the population. We introduce a general class of two-sex branching processes where, in each generation, the number of mating units which take part in the reproduction phase is randomly determined and the offspring probability distribution changes over time in a random environment. We provide several probabilistic results about the limit behaviour of populations whose dynamics is modelled by such a class of stochastic processes. In particular, we provide sufficient conditions for the almost sure extinction of the population or for its survival with a positive probability. As illustration, we include some simulated examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.