Abstract

We consider a class of stationary subdifferential inclusions in a reflexive Banach space. We reformulate the problem in terms of a variational inequality with multivalued term and prove an existence result using the Kakutani-Fan-Glicksberg fixed point theorem. This approach allows to consider, in a natural way, a dual variational formulation of the problem. Next, we study the link between the primal and dual formulations and provide an equivalence result. Then, we consider a new mathematical model which describes the contact of an elastic body with a foundation. We apply the abstract formalism to derive the primal and the dual variational formulations of the problem, in terms of displacement and stress, respectively. Finally, we present existence and equivalence results in the study of this contact model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.