Abstract
A general stochastic model for the spread of an epidemic developing in a closed population is introduced. Each model consisting of a discrete-time Markov chain involves a deterministic counterpart represented by an ordinary differential equation. Our framework involves various epidemic models such as a stochastic version of the Kermack and McKendrick model and the SIS epidemic model. We prove the asymptotic consistency of the stochastic model regarding a deterministic model; this means that for a large population both modelings are similar. Moreover, a Central Limit Theorem for the fluctuations of the stochastic modeling regarding the deterministic model is also proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.