Abstract

In this paper, we present a general mathematical construction that allows us to define a parametric class of H-sssi stochastic processes (self-similar with stationary increments), which have marginal probability density function that evolves in time according to a partial integro-differential equation of fractional type. This construction is based on the theory of finite measures on functional spaces. Since the variance evolves in time as a power function, these H-sssi processes naturally provide models for slow- and fast-anomalous diffusion. Such a class includes, as particular cases, fractional Brownian motion, grey Brownian motion and Brownian motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.