Abstract

A smooth surface $S$ in $\bf{R}^3$ is called parallel curved if there exists a plane in $\bf{R}^3$ such that at each point of $S$, there exists a principal direction parallel to the plane. For example, a plane, a cylinder and a round sphere are parallel curved. More generally, a surface of revolution is also parallel curved. The purposes of this paper are to study the behavior of the principal distributions on a real-analytic, parallel curved surface and to classify the connected, complete, real-analytic, embedded, parallel curved surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.