Abstract
A system ofN particles inR d with mean field interaction and diffusion is considered. Assuming adiabatic elimination of the momenta the positions satisfy a stochastic ordinary differential equation driven by Brownian sheets (microscopic equation), where all coefficients depend on the position of the particles and on the empirical mass distribution process. This empirical mass distribution process satisfies a quasilinear stochastic partial differential equation (SPDE). This SPDE (mezoscopic equation) is solved for general measure valued initial conditions by “extending” the empirical mass distribution process from point measure valued initial conditions with total mass conservation. Starting with measures with densities inL 2(R d ,dr), wheredr is the Lebesgue measure, the solution will have densities inL 2(R d ,dr) and strong uniqueness (in the Ito sense) is obtained. Finally, it is indicated how to obtain (macroscopic) partial differential equations as limits of the so constructed SPDE's.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.