Abstract

In this paper, the Hopf bifurcation for a class of three-dimensional quadratic system is investigated by making use of singular values methods. Studied system lies in symmetrical vector field with regard to planar y = x and it has two symmetrical singular points (1,2,1) and (2,1,1). We give the expressions of the first three focal values of the singular point (1,2,1) and show that each one of the two singular points (1,2,1) and (2,1,1) of the investigated system can become a fine focus of third order at the same time. Moreover, we obtain that each one of the two singular points (1,2,1) and (2,1,1) of the investigated system can bifurcate three small limit cycles under a certain coefficient's disturbed condition. In sum, six limit cycles can bifurcate from system (1). In terms of Hopf bifurcation of a three-dimensional quadratic system, our results are new and interesting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.