Abstract

We consider the class A of graphs that contain no odd hole, no antihole, and no “prism” (a graph consisting of two disjoint triangles with three disjoint paths between them). We prove that every graph G ∈ A different from a clique has an “even pair” (two vertices that are not joined by a chordless path of odd length), as conjectured by Everett and Reed [“Even pairs”, in: J.L. Ramírez-Alfonsín, B.A. Reed (eds.), Perfect Graphs, Wiley Interscience, New York, 2001]. Our proof is a polynomial-time algorithm that produces an even pair with the additional property that the contraction of this pair yields a graph in A . This entails a polynomial-time algorithm, based on successively contracting even pairs, to color optimally every graph in A . This generalizes several results concerning some classical families of perfect graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.