Abstract

Consider the computations at a node in a message passing algorithm. Assume that the node has incoming and outgoing messages <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbf {x} = (x_{1}, x_{2}, \ldots, x_{n})$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbf {y} = (y_{1}, y_{2}, \ldots, y_{n})$ </tex-math></inline-formula> , respectively. In this paper, we investigate a class of structures that can be adopted by the node for computing <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbf {y}$ </tex-math></inline-formula> from <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbf {x}$ </tex-math></inline-formula> , where each <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$y_{j}, j = 1, 2, \ldots, n$ </tex-math></inline-formula> is computed via a binary tree with leaves <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbf {x}$ </tex-math></inline-formula> excluding <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$x_{j}$ </tex-math></inline-formula> . We make three main contributions regarding this class of structures. First, we prove that the minimum complexity of such a structure is <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$3n - 6$ </tex-math></inline-formula> , and if a structure has such complexity, its minimum latency is <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\delta + \lceil \log (n-2^{\delta }) \rceil $ </tex-math></inline-formula> with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\delta = \lfloor \log (n/2) \rfloor $ </tex-math></inline-formula> , where the logarithm always takes base two. Second, we prove that the minimum latency of such a structure is <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\lceil \log (n-1) \rceil $ </tex-math></inline-formula> , and if a structure has such latency, its minimum complexity is <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n \log (n-1)$ </tex-math></inline-formula> when <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n-1$ </tex-math></inline-formula> is a power of two. Third, given <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(n, \tau)$ </tex-math></inline-formula> with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\tau \geq \lceil \log (n-1) \rceil $ </tex-math></inline-formula> , we propose a construction for a structure which we conjecture to have the minimum complexity among structures with latencies at most <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\tau $ </tex-math></inline-formula> . Our construction method runs in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$O(n^{3} \log ^{2}(n))$ </tex-math></inline-formula> time, and the obtained structure has complexity at most (generally much smaller than) <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n \lceil \log (n) \rceil - 2$ </tex-math></inline-formula> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call