Abstract

This paper proposes a class of nonlinear stochastic volatility models based on the Box-Cox transformation which offers an alternative to the one introduced in Andersen (1994). The proposed class encompasses many parametric stochastic volatility models that have appeared in the literature, including the well known lognormal stochastic volatility model, and has an advantage in the ease with which different specifications on stochastic volatility can be tested. In addition, the functional form of transformation which induces marginal normality of volatility is obtained as a byproduct of this general way of modeling stochastic volatility. The efficient method of moments approach is used to estimate model parameters. Empirical results reveal that the lognormal stochastic volatility model is rejected for daily index return data but not for daily individual stock return data. As a consequence, the stock volatility can be well described by the lognormal distribution as its marginal distribution, consistent with the result found in a recent literature (cf Andersen et al (2001a)). However, the index volatility does not follow the lognormal distribution as its marginal distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.