Abstract

$\ell_1$ mean filtering is a conventional, optimization-based method to estimate the positions of jumps in a piecewise constant signal perturbed by additive noise. In this method, the $\ell_1$ norm penalizes sparsity of the first-order derivative of the signal. Theoretical results, however, show that in some situations, which can occur frequently in practice, even when the jump amplitudes tend to $\infty$, the conventional method identifies false change points. This issue is referred to as stair-casing problem and restricts practical importance of $\ell_1$ mean filtering. In this paper, sparsity is penalized more tightly than the $\ell_1$ norm by exploiting a certain class of nonconvex functions, while the strict convexity of the consequent optimization problem is preserved. This results in a higher performance in detecting change points. To theoretically justify the performance improvements over $\ell_1$ mean filtering, deterministic and stochastic sufficient conditions for exact change point recovery are derived. In particular, theoretical results show that in the stair-casing problem, our approach might be able to exclude the false change points, while $\ell_1$ mean filtering may fail. A number of numerical simulations assist to show superiority of our method over $\ell_1$ mean filtering and another state-of-the-art algorithm that promotes sparsity tighter than the $\ell_1$ norm. Specifically, it is shown that our approach can consistently detect change points when the jump amplitudes become sufficiently large, while the two other competitors cannot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.