Abstract

A large time step (LTS) Godunov scheme firstly proposed by LeVeque is further developed in the present work and applied to Euler equations. Based on the analysis of the computational performances of LeVeque’s linear approximation on wave interactions, a multi-wave approximation on rarefaction fan is proposed to avoid the occurrences of rarefaction shocks in computations. The developed LTS scheme is validated using 1-D test cases, manifesting high resolution for discontinuities and the capability of maintaining computational stability when large CFL numbers are imposed. The scheme is then extended to multidimensional problems using dimensional splitting technique; the treatment of boundary condition for this multidimensional LTS scheme is also proposed. As for demonstration problems, inviscid flows over NACA0012 airfoil and ONERA M6 wing with given swept angle are simulated using the developed LTS scheme. The numerical results reveal the high resolution nature of the scheme, where the shock can be captured within 1–2 grid points. The resolution of the scheme would improve gradually along with the increasing of CFL number under an upper bound where the solution becomes severely oscillating across the shock. Computational efficiency comparisons show that the developed scheme is capable of reducing the computational time effectively with increasing the time step (CFL number).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.