Abstract

We consider a class of two-parameter weighted integral operators induced by harmonic Bergman-Besov kernels on the unit ball of $\mathbb{R}^{n}$ and characterize precisely those that are bounded from Lebesgue spaces $L^{p}_{\alpha}$ into harmonic Bergman-Besov spaces $b^{q}_{\beta}$, weighted Bloch spaces $b^{\infty}_{\beta} $ or the space of bounded harmonic functions $h^{\infty}$, allowing the exponents to be different. These operators can be viewed as generalizations of the harmonic Bergman-Besov projections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.