Abstract
ABSTRACTIn this paper a class of generalized differential variational inequalities with constraints involving history-dependent operators in Banach spaces is investigated. The unique solvability and regularity results are obtained via surjectivity of multivalued pseudomonotone operators combined with a fixed point principle. From abstract results, a theorem concerning existence, uniqueness and regularity of weak solution to a frictional viscoelastic contact problem with adhesion and history-dependent operator is established. Further, a theoretical analysis of a penalty method for history-dependent differential variational inequality is provided. The unique solvability of a penalized problem is shown, as well as the convergence of its solution to the solution of the original history-dependent differential variational inequality, as a penalty parameter tends to zero. Finally, results on a penalty method are applied to another contact problem, history-dependent frictional viscoelastic contact problem with a generalized normal compliance condition instead of a generalized Signorini contact condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.