Abstract

A small but interesting result of Brockett is extended to the Euclidean group SE(3) and is illustrated by several examples. The result concerns the explicit solution of an optimal control problem on Lie groups, where the control belongs to a Lie triple system in the Lie algebra. The extension allows for an objective function based on an indefinite quadratic form. Applying the result requires explicit knowledge of the Lie triple systems of the Lie algebra se(3). Hence, a complete classification of the Lie triple systems of this Lie algebra is derived. Examples are considered for optimal trajectories in three cases. The first case concerns cars moving in the plane. The second looks at motions that rigidly follow the Bishop frame to a space curve. The final example does not have a particular name as it does not seem to have been studied before. The appendix gives a brief introduction to Screw theory. This is essentially the study of the Lie algebra se(3).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.