Abstract

In Einstein's theory, the physics of gravitational fields is reflected by the geometry of the curved space-time manifold. One of the methods for a study of the geometrical properties of space-time consists in regarding it, locally, as embedded in a higher-dimensional flat space. In this paper, metrics admitting a 3-parameter group of motion are considered which form a generalization of spherically symmetric gravitational fields. A subclass of such metrics can be embedded into a five- dimensional flat space. It is shown that the second fundamental form governing the embedding can be expressed entirely by the energy-momentum tensor of matter and the cosmological constant. Such gravitational fields are called energetically rigid. As an application gravitating perfect fluids are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call