Abstract
In this paper we present a class of robust and fully algebraic two-level preconditioners for symmetric positive definite (SPD) matrices. We introduce the notion of algebraic local symmetric positive semidefinite splitting of an SPD matrix and we give a characterization of this splitting. This splitting leads to construct algebraically and locally a class of efficient coarse spaces which bound the spectral condition number of the preconditioned system by a number defined a priori. We also introduce the $\tau$-filtering subspace. This concept helps compare the dimension minimality of coarse spaces. Some PDEs-dependant preconditioners correspond to a special case. The examples of the algebraic coarse spaces in this paper are not practical due to expensive construction. We propose a heuristic approximation that is not costly. Numerical experiments illustrate the efficiency of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.