Abstract
We consider a class of decomposition methods for variational inequalities, which is related to the classical Dantzig–Wolfe decomposition of linear programs. Our approach is rather general, in that it can be used with certain types of set-valued or nonmonotone operators, as well as with various kinds of approximations in the subproblems of the functions and derivatives in the single-valued case. Also, subproblems may be solved approximately. Convergence is established under reasonable assumptions. We also report numerical experiments for computing variational equilibria of the game-theoretic models of electricity markets. Our numerical results illustrate that the decomposition approach allows to solve large-scale problem instances otherwise intractable if the widely used PATH solver is applied directly, without decomposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.