Abstract

The narrowing mechanism and term rewriting systems are powerful tools for constructing complete and efficient unification algorithms for useful classes of equational theories. This has been shown for the case where term rewriting systems are confluent and noetherian (i.e., terminating). In this paper we show that the narrowing mechanism, combined with ordinary unification, yields a complete unification algorithm for equational theories that can be described by a closed linear term rewriting system with the non-repetition property; this class allows non-terminating rewrite systems. For some special forms of input terms, narrowing generates complete sets of E-unifiers without resorting to the non-repetition property. The key observation underlying the proof is that a reduction sequence in this class of term rewriting system can be transformed into one which possesses properties that enable a completeness proof.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.