Abstract
In this paper, we introduce a novel way of performing real-valued optimization in the complex domain. This framework enables a direct complex optimization technique when the cost function satisfies the Brandwood's independent analyticity condition. In particular, this technique has been used to derive three algorithms, namely, kurtosis maximization using gradient update (KM-G), kurtosis maximization using fixed-point update (KM-F), and kurtosis maximization using Newton update (KM-N), to perform the complex independent component analysis (ICA) based on the maximization of the complex kurtosis cost function. The derivation and related analysis of the three algorithms are performed in the complex domain without using any complex-real mapping for differentiation and optimization. A general complex Newton rule is also derived for developing the KM-N algorithm. The real conjugate gradient algorithm is extended to the complex domain similar to the derivation of complex Newton rule. The simulation results indicate that the fixed-point version (KM-F) and gradient version (KM-G) are superior to other similar algorithms when the sources include both circular and noncircular distributions and the dimension is relatively high.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.