Abstract
We study a class of Cayley graphs as models for interconnection networks. With focus on efficient communication we prove that for any graph in the class there exists a gossiping protocol which exhibits attractive features, and, moreover, we give an algorithm for constructing such a protocol. In particular, these hold for two important subclasses of graphs, namely, Cayley graphs admitting a complete rotation and Frobenius graphs of a certain type. For such Frobenius graphs, we obtain the minimum gossip time and give an optimal gossiping protocol under which messages are transmitted along shortest paths and each arc is used exactly once at each time step. Moreover, for such Frobenius graphs we construct an all-to-all shortest path routing that is arc-transitive, edge- and arc-uniform, and optimal for the edge- and arc-forwarding indices simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.