Abstract
Given any parallelohedron P, its affine class A (P), i.e., the set of all parallelohedra affinely equivalent to it, is considered. Does this affine class contain at least one Voronoi parallelohedron, i.e., a parallelohedron which is a Dirichlet domain for some lattice? This question, more commonly known as Voronoi’s conjecture, has remained unanswered for more than a hundred years. It is shown that, in the case where the subset of Voronoi parallelohedra in A (P) is nonempty, this subset is an orbifold, and its dimension (as a real manifold with singularities) is completely determined by its combinatorial type; namely, it is equal to the number of connected components of the so-called Venkov subgraph of the given parallelohedron. Nevertheless, the structure of this orbifold depends not only on the combinatorial properties of the parallelohedron but also on its affine properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.