Abstract

In several important scientific fields, the efficient numerical solution of symmetric systems of ordinary differential equations, which are usually characterized by oscillation and periodicity, has become an open problem of interest. In this paper, we construct a class of embedded exponentially fitted Rosenbrock methods with variable coefficients and adaptive step size, which can achieve third order convergence. This kind of method is developed by performing the exponentially fitted technique for the two-stage Rosenbrock methods, and combining the embedded methods to estimate the frequency. By using Richardson extrapolation, we determine the step size control strategy to make the step size adaptive. Numerical experiments are given to verify the validity and efficiency of our methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.