Abstract
Systems of integer linear (Diophantine) equations arise from various applications. In this paper we present an approach, based upon the ABS methods, to solve a general system of linear Diophantine equations. This approach determines if the system has a solution, generalizing the classical fundamental theorem of the single linear Diophantine equation. If so, a solution is found along with an integer Abaffian (rank deficient) matrix such that the integer combinations of its rows span the integer null space of the cofficient matrix, implying that every integer solution is obtained by the sum of a single solution and an integer combination of the rows of the Abaffian. We show by a counterexample that, in general, it is not true that any set of linearly independent rows of the Abaffian forms an integer basis for the null space, contrary to a statement by Egervary. Finally we show how to compute the Hermite normal form for an integer matrix in the ABS framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.