Abstract

BackgroundAcute kidney injury (AKI) is a common complication of acute myocardial infarction (AMI), and is associated with adverse outcomes. The study aimed to identify a miRNA signature for the early diagnosis of post-AMI AKI.MethodsA total of 108 patients admitted to a coronary care unit (CCU) were divided into four subgroups: AMI−AKI−, AMI+AKI−, AMI+AKI+, and AMI−AKI+. Thirty-six miRNA candidates were selected based on an extensive literature review. Real-time quantitative RT-PCR analysis was used to determine the expression levels of these miRNAs in the serum collected on the day of CCU admittance. TargetScan 7.1 and miRDB databases were used for target prediction and Metacore 6.13 was used for pathway analysis.ResultsThrough a stepwise selection based on abundance, hemolytic effect and differential expression between four groups, 9 miRNAs were found to have significantly differential expression levels as potential biomarkers for post-AMI AKI specifically. Noticeably, the expression levels of miR-24, miR-23a and miR-145 were significantly down-regulated in AMI+AKI+ patients compared to those in AMI+AKI− patients. Combination of the three miRNAs as a panel showed the best performance in the early detection of AKI following AMI (AUC = 0.853, sensitivity 95.65%), compared to the analysis of serum neutrophil gelatinase-associated lipocalin (AUC = 0.735, sensitivity 63.16%). Furthermore, bioinformatic analysis indicated that these three miRNAs regulate the transforming growth factor beta signaling pathway and involve in apoptosis and fibrosis in AKI.ConclusionsFor the first time, this study identify a unique circulating miRNA signature (miR-24-3p, miR-23a-3p, miR-145-5p) that can potentially early detect AKI following AMI and may be involved in renal injury and fibrosis in post-AMI AKI pathogenesis.

Highlights

  • Acute kidney injury (AKI) is a common complication of acute myocardial infarction (AMI), and is associ‐ ated with adverse outcomes

  • The severity and duration of AKI are correlated with the risk of chronic kidney disease and end-stage renal disease, leading to increased economic, social and personal burdens (Additional file 1: Figure S1a) [8, 9]

  • This study aims to identify a circulating miRNA signature for post-AMI AKI, in the hopes of facilitating early diagnosis and prompt early intervention

Read more

Summary

Introduction

Acute kidney injury (AKI) is a common complication of acute myocardial infarction (AMI), and is associ‐ ated with adverse outcomes. The incidence of AKI following acute myocardial infarction (AMI) is approximately 12–37% [2,3,4,5]. Compared to those without AKI, patients with AMI who develop incident AKI have significantly prolonged hospital stays and increased rates of hospital mortality (14–39% vs 0.5–9%) and 1-year mortality (16–50% vs 5–14%) [2,3,4, 6, 7]. The severity and duration of AKI are correlated with the risk of chronic kidney disease and end-stage renal disease, leading to increased economic, social and personal burdens (Additional file 1: Figure S1a) [8, 9].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call