Abstract

Emerging evidence has demonstrated the pivotal roles of circular RNAs (circRNAs) in the modulation of malignancy and pathological progression among multiple human cancers. Glucose metabolism reprogramming is a widely identified characteristic for contributing to facilitate tumorigenesis. Nonetheless, their contributions to head and neck squamous cell carcinoma (HNSCC) cell glycolysis remain to be further elucidated. Herein, we aim to investigate the role of circRNA, hsa_circ_0018180 (also named as circPARD3) in HNSCC. Expression patterns of circPARD3 in HNSCC tissues and different cell lines were determined by qRT-PCR assay, as well as its correlation with the prognosis of survival. CCK-8, EdU incorporation, and transwell assays were carried out to assess the cell viability, proliferation, migration, and invasion, respectively. Glucose uptake and lactate production were evaluated by preforming glycolysis. Mechanistically, the circPARD3/miR-5194/ENO1 axis was verified by RNA immunoprecipitation (RIP) and luciferase reporter assays. Western blot analysis was employed to measure the epithelial-mesenchymal transition (EMT)-associated biomarkers. Upregulated circPARD3 observed in HNSCC tissues and cell lines indicated the poor prognosis of patients. Stable knockdown of circPARD3 dramatically exerted the suppressive effects on cell viability, proliferation, migration, and invasion, as well as glucose uptake and lactate production. Mechanistically, circPARD3 harbored miR-5194, serving as a miRNA sponge, thereby increasing ENO1 expression. Moreover, ENO1 evidently reversed miR-5194-mediated attenuated malignant behaviors. Collectively, our study identified an oncogenic role of circPARD3 in HNSCC through a novel machinery of circPARD3/miR-5194/ENO1 and provided a promising therapeutic target for HNSCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call