Abstract

A circular non-Newtonian fluid model and system approach is used in this paper to study the effect of a stationary surface irregularity where the film shape has been modified in the conjunctions of line contacts. A modified transient Reynolds equation is developed in this paper and is used to study the effect of a moving surface irregularity in the problem of microelastohydrodynamic lubrication. Lubrication performance factors such as pressure and film profiles were studied for both a stationary and a moving surface irregularity in a lubricated conjunction. The shear stress and traction coefficient for various height of the surface irregularity were also studied for a stationary surface irregularity. Results show that the film shape obtained from full-film elastohydrodynamic lubrication theory still gave a good prediction except when the surface irregularity occurred at inlet (Xp = − 1.0), but it failed to explain the high pressure and film fluctuations around the surface irregularity which was in the Hertzian contact zone. A bump or a groove occurring in the outlet around (Xp = 1.0) significantly affected the location of the outlet boundary, and the depth of the nip film thickness in the outlet caused by the surface irregularity profoundly affected the pressure spike for both a stationary and a moving surface irregularity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.