Abstract

A CFD model is proposed for numerical simulations of extremely nonlinear free-surface flows such as wave impact phenomena and violent wave–body interactions. The constrained interpolation profile (CIP) method is adopted as the base scheme for the model. The wave–body interaction is treated as a multiphase problem, which has liquid (water), gas (air), and solid (wave-maker and floating body) phases. The flow is represented by one set of governing equations, which are solved numerically on a nonuniform, staggered Cartesian grid by a finite-difference method. The free surface as well as the body boundary are immersed in the computation domain and captured by different methods. In this article, the proposed numerical model is first described. Then to validate the accuracy and demonstrate the capability, several two-dimensional numerical simulations are presented, and compared with experiments and with computations by other numerical methods. The numerical results show that the present computation model is both robust and accurate for violent free-surface flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.