Abstract

The karyotypes of seven Ilybius species are described and illustrated. All except I. wasastjernae have a basic karyotype of 34 autosomes plus sex chromosomes which are X0 (♂), XX (♀), with the X chromosome among the largest in the nucleus. This karyotype appears to be the norm for Ilybius and supports the transfer of the species concerned from Agabus to Ilybius. I. wasastjernae has 36 autosomes and the X chromosome is the smallest in the nucleus and its karyotype is unlike any other known karyotype in either Ilybius or Agabus. In most of the species studied no intraspecific variation has been detected. Exceptions are I. chalconatus, where there is one inversion polymorphism in one of the autosomes, and I. montanus whose autosome number has been found to vary from 29 to 34. Such variation is highly unusual among Coleoptera. The variation results from fusion‐fission polymorphisms involving three different pairs of autosomes. In each case the fusions may be homozygous, heterozygous or absent. All populations investigated were polymorphic for some of the fusions, but only one (La Salceda, Spain) included individuals lacking all fusions. The frequencies of fused and unfused chromosomes were analysed in three English populations. In only one case was there a departure from the values expected from the Hardy‐Weinberg equilibrium, and this population also showed a significant difference from the other two. Meiosis in males heterozygous for fusions involves the production of trivalents in first division, but results in the production of abundant sperm, with no evidence of chromosomal abnormalities in second metaphase, or of degenerating cells as a result of failed meiosis. The three fusions sites are consistent in all the populations studied, and it is concluded that these fusions represent unique historical events rather than current chromosomal instability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.