Abstract

BackgroundBovine arthrogryposis multiplex congenita (AMC) is a syndromic term for a congenital condition characterized by multiple joint contractures. Rare inherited forms of bovine AMC have been reported in different breeds. For AMC in Angus cattle a causative genomic deletion encompassing the agrin (AGRN) gene, encoding an essential neural regulator that induces the aggregation of acetylcholine receptors (AChRs), is known. In 2015, three genetically related cases of generalized AMC affecting Red dairy calves were diagnosed in Denmark.ResultsThe family history of three affected calves suggested an autosomal recessive inheritance. Single nucleotide polymorphism (SNP) genotyping showed a single genomic region of extended homozygosity of 21.5 Mb on chromosome 19. Linkage analysis revealed a maximal parametric LOD score of 1.8 at this region. By whole genome re-sequencing of the three cases, two private homozygous non-synonymous variants were detected in the critical interval. Both variants, located in the myosin phosphatase Rho interacting protein (MPRIP) and the cholinergic receptor nicotinic beta 1 subunit gene (CHRNB1), were perfectly associated with the AMC phenotype. Previously described CHRNB1 variants in humans lead to a congenital myasthenic syndrome with impaired neuromuscular transmission. The cattle variant represents a single base deletion in the first exon of CHRNB1 (c.55delG) introducing a premature stop codon (p.Ala19Profs47*) in the second exon, truncating 96 % of the protein.ConclusionsThis study provides the first phenotypically and genetically characterized example of a bovine AMC phenotype that represents an inherited neuromuscular disorder corresponding to human congenital myasthenic syndrome. The identified CHRNB1 loss of function variant is predicted to have a deleterious effect on fetal AChR function, which could explain the lethal phenotype reported in this study. The identification of this candidate causative mutation thus widens the known phenotypic spectrum of CHRNB1 mutations and enables selection against this pathogenic variant in Red dairy cattle.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2832-x) contains supplementary material, which is available to authorized users.

Highlights

  • Bovine arthrogryposis multiplex congenita (AMC) is a syndromic term for a congenital condition characterized by multiple joint contractures

  • Bovine arthrogryposis multiplex congenita (AMC) is a syndromic term for a congenital condition characterized by arthrogryposis or joint contracture of multiple joints involving more than just one part of the body [1]

  • Animals Three Red dairy calves were submitted for examination: Case 1: a male delivered at gestation day (GD) 284; Case 2: a female delivered at GD 275; and Case 3: a female delivered at GD 258

Read more

Summary

Introduction

Bovine arthrogryposis multiplex congenita (AMC) is a syndromic term for a congenital condition characterized by multiple joint contractures. In American Angus cattle an outbreak of a recessive inherited form of AMC was reported to be associated with a 23 kb sized genomic deletion encompassing the entire ISG15 ubiquitin-like modifier (ISG15) gene, the 5’ regulatory region of the hairy and enhancer split 4 (HES4) gene, and the first two exons of the agrin (AGRN) gene (OMIA 001465-9913) (Additional file 1) [5] In addition to these conditions, AMC occurs as an accompanying lesion of complex congenital syndromes [6] such as the bovine arachnomelia syndrome (OMIA 000059-9913, OMIA 001541-9913) [7, 8] and schistosoma reflexum [9]. This causes an imbalance in fetal muscular activity (flexor vs. extensor muscles), which is displayed as AMC at birth [12, 13]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.