Abstract

The development of injectable hydrogels with good biocompatibility, self-healing, and superior hemostatic properties is highly desirable in emergency and clinical applications. Herein, we report an in situ injectable and self-healing hemostatic hydrogel based on choline phosphoryl functionalized chitosan (CS-g-CP) and oxidized dextran (ODex). The CP groups were hypothesized to accelerate hemostasis by facilitating erythrocyte adhesion and aggregation. Our results reveal that the CS-g-CP/ODex hydrogels exhibit enhanced blood clotting and erythrocyte adhesion/aggregation capacities compared to those of the CS/ODex hydrogels. The CS-g-CP50/ODex75 hydrogel presents rapid gelation time, good mechanical strength and tissue adhesiveness, satisfactory bursting pressure, and favorable biocompatibility. The hemostatic ability of the CS-g-CP50/ODex75 hydrogel was significantly improved compared to that of the CS/ODex hydrogel and commercial fibrin sealant in the rat tail amputation and liver/spleen injury models. Our study highlights the positive and synergistic effects of CP groups on hemostasis and strongly supports the CS-g-CP50/ODex75 hydrogel as a promising adhesive for hemorrhage control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call