Abstract

In this letter, the multilevel fast multipole method (MLFMM) is combined with the polynomial chaos expansion (PCE)-based stochastic Galerkin method (SGM) to stochastically model scatterers with geometrical variations that need to be described by a set of correlated random variables (RVs). It is demonstrated how Cholesky decomposition is the appropriate choice for the RVs transformation, leading to an efficient SGM-MLFMM algorithm. The novel method is applied to the uncertainty quantification of the currents induced on a rough surface, being a classic example of a scatterer described by means of correlated RVs, and the results clearly demonstrate its superiority compared to the nonintrusive PCE methods and to the standard Monte Carlo method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.