Abstract
An index based on chl a fluorescence quenching analysis was tested as a predictor of photosynthetic rates of undisturbed intertidal microphytobenthic assemblages. The fluorescence index, Pfluo, was derived from the combination of different chl a fluorescence parameters chosen to represent the two main sources of short‐term variability in the community‐level microphytobenthic photosynthesis: 1) the quantum yield of photosynthesis of the microalgae present in the photic zone of the sediment, φP, and 2) the community‐level efficiency of photosynthetic light absorption, ɛ, determined by the microalgal concentration in the photic zone. Variations in φP were traced by the fluorescence index ΔF/Fm′ (the effective quantum yield of charge separation at PSII), whereas changes in ɛ were followed by the fluorescence parameter Fo (dark or minimum fluorescence level). Gross photosynthetic rate, P, and fluorescence parameters were measured nondestructively and simultaneously under in situ conditions, on the same samples, using oxygen microelectrodes and pulse amplitude modulation fluorometry, respectively. Despite the large and uncorrelated hourly variability in irradiance, photosynthetic rate, and fluorescence parameters included in Pfluo, highly significant correlations between Pfluo and P were found for all the sampling periods, encompassing hourly, biweekly, and seasonal time scales. The variability in P explained by Pfluo ranged from 84.3% to 91.4% when sampling periods were considered separately and reached 81.1% when all data were pooled. The results of the study show that despite its simplicity, the index Pfluo can be used to trace short‐term variations in the photosynthetic rate of undisturbed microphytobenthic assemblages undergoing rhythmic vertical migration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.