Abstract
An extracting medium based on chitosan–polypyrrole (CS–PPy) magnetic nanocomposite was synthesized by chemical polymerization of pyrrole at the presence of chitosan magnetic nanoparticles (CS-MNPs) for micro-solid phase extraction. In this work, magnetic nanoparticles, the modified CS-MNPs and different types of CS–PPy magnetic nanocomposites were synthesized. Extraction efficiency of the CS–PPy magnetic nanocomposite was compared with the CS-MNPs and Fe3O4 nanoparticles for the determination of naproxen in aqueous samples, via quantification by spectrofluorimetry. The scanning electron microscopy images obtained from all the prepared nanocomposites revealed that the CS–PPy magnetic nanocomposite possess more porous structure. Among different synthesized magnetic nanocomposites, CS–PPy magnetic nanocomposite showed a prominent efficiency. Influencing parameters on the morphology of CS–PPy magnetic nanocomposite such as weight ratio of components was also assayed. In addition, effects of different parameters influencing the extraction efficiency of naproxen including desorption solvent, desorption time, amount of sorbent, ionic strength, sample pH and extraction time were investigated and optimized. Under the optimum condition, a linear calibration curve in the range of 0.04–10μgmL−1 (R2=0.9996) was obtained. The limits of detection (3Sb) and limits of quantification (10Sb) of the method were 0.015 and 0.04μgmL−1 (n=3), respectively. The relative standard deviation for water sample spiked with 0.1μgmL−1 of naproxen was 3% (n=5) and the absolute recovery was 92%. The applicability of method was extended to the determination of naproxen in tap water, human urine and plasma samples. The relative recovery percentages for these samples were in the range of 56–99%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.