Abstract
The construction of a new chirped pulse Fourier transform microwave (CP-FTMW) spectrometer with multiple-antenna detection (MAD) is reported. The instrument design and execution represent a completely new approach to possibly increasing sensitivity in CP-FTMW spectroscopy as it does not involve increased sampling, power, or passes of microwaves with the molecular sample. This is particularly advantageous for experiments where only one sampling point is available. The MAD-CP-FTMW or “MAD Chirp” is demonstrated on both linear molecule carbonyl sulfide (OCS) and asymmetric-top molecule 1,3-difluorobenzene (DFBZ) with detection points at the broadcast antenna as well as in the quadrature to the traditional receiving antenna. Signal-to-noise comparisons with each sample at each detection point have been made and are reported. Experiments demonstrating the signals detected in these new positions are molecular and not an artifact of a reflection are reported. Although this represents a first step to a possible new approach to addressing CP-FTMW sensitivity, no sensitivity increase based on this method is currently reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.