Abstract

Data size minimization is the focus of data compression procedures by altering representation and reducing redundancy of information to a more effective kind. In general, lossless approach is favoured by a number of compression methods for the purpose of maintaining the content integrity of the file afterwards. The benefits of compression include saving storage space, speed up of data transmission and high quality of data. This paper observes the effectiveness of Chinese Remainder Theorem (CRT) enhancement in the implementation of Lempel-Ziv-Welch (LZW) and Huffman coding algorithms for the purpose of compressing large size images. Ten images of Yale database was used for testing. The outcomes revealed that CRT-LZW compression saved more space and speedy compression (or redundancy removal) of original images to CRT-Huffman coding by 29.78% to 14.00% respectively. In terms of compression time, CRT-LZW approach outperformed CRT-Huffman approach by 9.95 sec. to 19.15 sec. For compression ratio, CRT-LZW also outperformed CRT-Huffman coding by 0.39 db to 4.38 db, which is connected to low quality and imperceptibility of the former. Similarly, CRT-Huffman coding (28.13db) offered better quality Peak-Signal-to-Noise-Ratio (PSNR) for the reconstructed images when compared to CRT-LZW (3.54db) and (25.59db) obtained in other investigated paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.