Abstract
In this work, we study a class of generalized quasi-cyclic (GQC) codes called skew GQC codes. By the factorization theory of ideals, we give the Chinese Remainder Theorem in the skew polynomial ring, which leads to a canonical decomposition of skew GQC codes. We also focus on some characteristics of skew GQC codes in details. For a 1-generator skew GQC code, we define the parity-check polynomial, determine the dimension and give a lower bound on the minimum Hamming distance. The skew QC codes are also discussed briefly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.