Abstract

BackgroundMiddle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory disease in humans, with a case fatality rate of approximately 35%, thus posing a considerable threat to public health. The lack of approved vaccines or antivirals currently constitutes a barrier in controlling disease outbreaks and spread.MethodsIn this study, using a mammalian expression system, which is advantageous for maintaining correct protein glycosylation patterns, we constructed chimeric MERS-CoV virus-like particles (VLPs) and determined their immunogenicity and protective efficacy in mice.ResultsWestern blot and cryo-electron microscopy analyses demonstrated that MERS-CoV VLPs were efficiently produced in cells co-transfected with MERS-CoV spike (S), envelope, membrane and murine hepatitis virus nucleocapsid genes. We examined their ability as a vaccine in a human dipeptidyl peptidase 4 knock-in C57BL/6 congenic mouse model. Mice immunized with MERS VLPs produced S-specific antibodies with virus neutralization activity. Furthermore, MERS-CoV VLP immunization provided complete protection against a lethal challenge with mouse-adapted MERS-CoV and improved virus clearance in the lung.ConclusionsOverall, these data demonstrate that MERS-CoV VLPs have excellent immunogenicity and represent a promising vaccine candidate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call