Abstract

We present the design and investigation of a novel chemosorption vacuum pump (CSVP) for discharging the exhaust gases of a chemical oxygen-iodine laser system diluted with carbon dioxide (CO2-COIL). The CSVP comprises two fixed-bed reactors separately filled with CO2/H2O and O2/I2/Cl2 adsorbents, which can efficiently chemically absorb the CO2-COIL exhaust gases at room or higher temperature. We consider the effects of the adsorbents in different specifications and fixed beds of various constructions on the adsorption performance of the CSVP. We develop and study the sealed CO2-COIL system with the CSVP. We achieve a stable operation with a cumulative duration time of 40 s for four runs and an average output power up to 2.0 kW at a Cl2 flow rate of ∼158 mmol/s and a CO2 flow rate of 132 mmol/s. The experimental results indicate that the COIL system with the CSVP performs similarly to a conventional COIL with a vacuum tank. Taking into account that the CSVP is free of vibration and noise, avoids air pollution, is easily operated, and has a short preparation time, we believe that the chemosorption vacuum pump is an excellent alternative pump system for a transportable COIL system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.