Abstract

Proper distribution of immune cells in the uterus is a prerequisite for successful implantation and subsequent placentation, but biochemical signals that govern such events have not been well characterized. In the present study, the cDNA of a chemokine, interferon (IFN)-gamma-inducible protein 10 kDa (IP-10), was identified from a cDNA subtraction study between uterine endometrial tissues from Day 17 pregnant and Day 15 cyclic ewes. The effect of IFN-tau on IP-10 expression and the involvement of IP-10 in the recruitment of immune cells were then investigated. Northern blot analysis revealed that large amounts of IP-10 mRNA were present during conceptus attachment to maternal endometrium and early placentation. IP-10 mRNA was localized to monocytes distributed in the subepithelial stroma of pregnant but not cyclic uteri. This finding was supported by the discovery of IP-10 mRNA expression in monocytes but not in lymphocytes, uterine epithelial cells, or stromal cells. Moreover, the expression of IP-10 mRNA by the monocytes was stimulated by IFN-alpha, IFN-gamma, and IFN-tau in a dose-dependent manner, but the expression of IP-10 mRNA by the endometrial explants was most stimulated by IFN-tau. In a chemotaxis assay, migration of peripheral blood mononuclear cells was stimulated by the addition of IFN-tau stimulated-endometrial culture medium, and the effect was significantly reduced by neutralization with an anti-IP-10 antibody. These results suggest that endometrial IP-10 regulated by conceptus IFN-tau regulates recruitment and/or distribution of immune cells seen in the early pregnant uterus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.