Abstract
The present work discloses the application of two fluorescent zinc and cadmium complexes (1 and 2) for sensing of Hg(II) ions through a chemodosimetric approach. The ligand under consideration in this work is a N2O donor Schiff base ligand (E)-4-bromo-2-(((2-morpholinoethyl)imino)methyl)phenol (HL), which has been harnessed to generate complexes [Zn3L2(OAc)4] (1) and [Cd3L2(OAc)4] (2). X-ray single crystal diffraction studies unveil the trinuclear skeleton of complexes 1 and 2. Both complexes have been found to be highly fluorescent in nature. However, the quantum efficiency of Zn(II) complex (1) dominates over the Cd(II) analogue (2). The absorption and emission spectroscopic properties of the complexes have been investigated by density functional theory. Complexes 1 and 2 can detect Hg2+ ions selectively by fluorescence quenching, and it is noteworthy to mention that the mechanism of sensing is unique as well as interesting. In the presence of Hg2+ ions, complexes 1 and 2 are transformed to mononuclear mercuric intermediate complex (3) and finally to a trinuclear mercuric complex (4) by hydrolysis. We have successfully trapped the intermediate complex 3, and we characterized it with the aid of X-ray crystallography. Transformation of complexes 1 and 2 to intermediate complex 3 and finally to 4 has been established by UV-vis spectroscopy, fluorescence spectroscopy, ESI-MS spectroscopy, 1H NMR spectroscopy, and X-ray crystallography. The spontaneity of the above conversion is well supported by thermodynamic aspects as reflected from density functional theoretical calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.